Root System Architecture from Coupling Cell Shape to Auxin Transport
نویسندگان
چکیده
منابع مشابه
Root System Architecture from Coupling Cell Shape to Auxin Transport
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together w...
متن کاملCorrection: Root System Architecture from Coupling Cell Shape to Auxin Transport
Since publication of this paper, the authors became aware of details in the preparation of a composite figure that required correction. In the previous version of Figure 2, a segment within a cortical cell close to the shootward end of panel 2D1 was processed to match between overlapping images, which does not fully comply with image processing standards. We have reconstructed all composite pan...
متن کاملAuxin transport promotes Arabidopsis lateral root initiation.
Lateral root development in Arabidopsis provides a model for the study of hormonal signals that regulate postembryonic organogenesis in higher plants. Lateral roots originate from pairs of pericycle cells, in several cell files positioned opposite the xylem pole, that initiate a series of asymmetric, transverse divisions. The auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) arrests l...
متن کاملPolar Auxin Transport: Cell Polarity to Patterning
Auxin is a signaling molecule with profound influence on plant morphogenesis. Because of its activity gradient-related effects on plant development and response programs, it is considered as a plant morphogen. Auxin displays a spectacular ability to mobilize in a cell-to-cell and polar fashion. Auxin efflux carrier PIN proteins direct this intercellular flow of auxin and thus bear a ratelimitin...
متن کاملGravity-regulated differential auxin transport from columella to lateral root cap cells.
Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin leve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS Biology
سال: 2008
ISSN: 1545-7885
DOI: 10.1371/journal.pbio.0060307